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This paper documents the third phase of a programme of experimental work which
validates a structural health monitoring methodology based on novelty detection. In this
paper, an extension of the detection method for damage location is proposed and
demonstrated. The structure of interest is a Gnat aircraft wing. Although it was not
possible to damage the aircraft, the method was demonstrated by determining which of a
set of inspection panels had been removed.
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1. INTRODUCTION

The problem of on-line structural health monitoring (SHM) of aircraft is a very difficult
one. However, the motivation for pursuing research in the field is strong; integrated SHM
technology may well allow significant reductions in the cost of ownership of aircraft, both
military and civil. There is no shortage of research activity in the field; however, progress is
slow and incremental and the effort tends to be concentrated on computer simulations and
relatively simple laboratory structures.

At the risk of repeating material from earlier papers [1], it is useful to think of the SHM
problem in terms of a hierarchical structure, perhaps the most well-known framework is
that of Rytter [2].

Level 1 (Detection): The method gives a qualitative indication that damage might be
present in the structure.

Level 2 (Localization): The method gives information about the probable position of the
damage.

Level 3 (Assessment): The method gives an estimate of the extent of the damage.
Level 4. (Prediction): The method offers information about the safety of the structure

e.g., estimates a residual life.
yNow QinetiQ.
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Each level is more difficult than the last. Although results have been presented
supporting the existence of methods working up to level 3, they are usually based on
systems and structures of low complexity and are far from convincing aerospace industry
of their applicability in the field. Although level 4 is most difficult of all, it is paradoxically
the case that some prediction methods have actually been implemented. For example,
operational load monitoring (OLM) has been used as a tool for prognosis; measured
strains from an airframe can be used to estimate the fatigue life consumption for a given
mission and the residual life of the structure can be estimated. These prediction methods
are rather blunt instruments however, as they do not}cannot in fact}use diagnostic
information from lower levels. A true level 4 system would use information about the
location and extent of the damage in forming its prognosis.

The philosophy of the programme of work to which this paper belongs is to develop
methods of addressing the SHM problem at each level which are robust enough to survive
experimental validation on real aircraft structures. This has entailed a reevaluation of
damage identification methods and a return to basic detection (level 1) methods.

The first stage involved the development and benchmarking of methods of novelty

detection [3, 4], i.e., the problem of distinguishing between the normal operation of a
system and any anomalous conditions which may be symptomatic of damage. The
methods investigated included a kernel density estimation (KDE) approach and an
artificial neural network (ANN).

The first phase of experimental work [1] began the verification of the novelty detection
method. The question of what to measure and how to convert data into features suitable
for diagnosis arose at this point, so a simplified structure was adopted. Tests were carried
out on a model wingbox which consisted of an Aluminium panel stiffened with ribs
and stringers. The damage was induced by making a progressive saw-cut through
one of the stringers. The novelty detection methods were successful in signalling all
the damage states where the depth of the cut exceeded 5mm. The features used for the
analysis were transmissibilities measured along the stringer. A further analysis
using modal strain energy methods proved capable of locating the damage along
the stringer [5]. However, it was recognized that the location method was rather insensitive
and would not generalize well to location in a two- or three-dimensional structure.
Also as part of this work, a new novelty detection approach based on multi-
variate statistics was introduced. The method}outlier analysis}proved to be the
most robust of the three methods used and was carried forward to the next stage of
the work.

The second phase of the experimental research was a successful attempt to diagnose
local damage on a full-scale structure in this case a Gnat aircraft [6]. Damages of various
forms were introduced into copies of a wing inspection panel and, as before,
transmissibility measurements across the panels were used to try and detect the damages
using outlier analysis. In all cases, it proved possible to detect the flaws. However, the
exercise was non-trivial and raised important points concerning the problem of detection
in varying operational or environmental conditions.

The conclusion drawn from the above work was that damage detection based on
novelty analysis is a feasible means of detecting damage on real structures and to a large
extent addresses the problem of SHM up to level 1. Note that this is true only for the
context addressed i.e., for vibration-based features it is possible to detect damage of a
certain type and extent. This extent is large compared with, for example, a subcritical
fatigue crack, and the methods will almost certainly fail if this degree of resolution is
required. However, it is unlikely that any global monitoring system will be capable of such
high resolution. It is almost certain that a working SHM system for large structures must
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be a fusion of a global system looking for moderate to severe damage in largely damage
tolerant areas, with a set of local monitoring systems which aim to diagnose subcritical
faults in significant structural items. The vibration-based system adopted in this study
should be considered as a candidate for the former.

The objective of the latest phase of the programme was to move from detection to
location (level 2). This was to be achieved by extending the vibration-based approach. A
network of sensors was used to establish a set of novelty detectors, each sensitive to
different regions of the wing. Once the relevant features for each detector had been
identified and extracted, a neural network was used to interpret the resulting set of novelty
indices. Because it was not possible to damage the wing, faults were simulated by
sequentially removing inspection plates}of which there were nine. Providing a means of
simulating damage, this strategy also converted the location problem naturally into a
discrete classification problem. Because the panels were different sizes, the analysis gave
some insight into the sensitivity of the method, i.e., what was likely to be the minimum
detectable damage.

The layout of this paper is as follows. Section 2 describes the experimental layout and
strategy and section 3 describes how features were chosen for novelty detection. Section 4
discusses how the novelty indices are interpreted by a neural network in order to locate the
damage; the results of the analysis are presented and the report is completed with
discussion and conclusions.

2. TEST SET-UP AND DATA CAPTURE

As in the previous paper in this series [6], the structure under investigation was a
Gnat trainer aircraft; the object of the exercise being to locate damage in the starboard
wing (Figure 1). The first problem encountered was that it was not possible to damage
the aircraft. This problem was overcome by noting the presence of numerous inspection
panels distributed over the wing. It was decided to simulate damage by sequentially
removing panels; this also had the distinct advantage that each damage scenario was
reversible and it would be possible therefore to monitor the repeatability of the
measurements.

Of the various panels available, nine were chosen, mainly for their ease of removal and
also to cover a range of sizes. These were distributed as shown in Figure 2. Figure 2 is not
drawn to scale, it is a schematic showing a rough estimate of the relative sizes of the panels.

The areas of the panels P1–P9 are given in Table 1. Removal of any of these panels
actually constitutes a rather large damage. Panels P3 and P6 are likely to give trouble as
they are by far the smallest.

Each panel was fixed to the wing by a number of screws, the numbers varying be-
tween 8 and 26. On some of the panels, screws were missing as a result of damaged
threads in the holes. In fact during the repeated removal of the plates during testing,
further holes were damaged. This meant that there was some variation throughout the
test even for normal condition (all panels attached). However, given experience gained
during the previous experimental phase of the programme [6], it was assumed that this
was unlikely to be a source of major variation, compared to the uncertainty in the
fixing conditions of the remaining screws. The screws were secured and removed with an
electric screwdriver with a controllable torque; the same torque setting was used
throughout.

As in the previous studies, it was decided to use transmissibilities for the base
measurements. This had proved effective in the novelty detection phase of the work,



Figure 1. Starboard wing of Gnat trainer.
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and was expected to extend naturally to the location problem. This decision was supported
by a study of damage location in a plate based on measured transmissibilities [7].
The initial decision was to measure a transmissibility across each plate. In order to
use transducers effectively, the panels were split into three groups A, B and C. Each
group was allocated a centrally placed reference transducer, together with three
other transducers, each associated with a specific plate. The transducer layout is shown
in Figure 3.

Although this network of sensors offers the possibility of forming many transmissi-
bilities, only those measured directly across the plates were used in this study. The
transmissibility across plate Pn was denoted Tn: Later when feature selection is discussed,
it will be necessary to label the reciprocals of these transmissibilities and these will be
denoted Tnn: Table 2 summarizes how the measurements were formed. The sensors used
were standard piezoelectric accelerometers of the PCB type.

The wing was excited using a Ling electrodynamic shaker attached directly below
the panel P4 on the bottom surface of the wing. A white Gaussian excitation was
generated within the acquisition system and amplified using a Gearing and Watson power
amplifier.

The transmissibilities were measured using a DIFA Scadas 24-channel acquisition
system controlled by LMS software running on a HP workstation. In all cases 1024
spectral lines were measured; both real and imaginary parts of the functions were
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Figure 2. Schematic of starboard wing inspection panels.

Table 1

Area of inspection panels

Panel Area (m2)

1 0�0221
2 0�0496
3 0�00825
4 0�08
5 0�0176
6 0�00825
7 0�0392
8 0�0468
9 0�0234
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obtained. As the smaller panels were of the same order of size as the major defects in the
previous novelty detection study [6], it was assumed necessary to excite modes with the
same order of wavelengths and hence frequencies. The transmissibilities were therefore
measured between 1024 and 2048Hz.
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Figure 3. Schematic of transducer locations.

Table 2

Transducers used to form transmissibilities

Plate Associated Reference Response
transmissibility transducer transducer

P1 T1 AR A1
P2 T2 AR A2
P3 T3 AR A3
P4 T4 BR B1
P5 T5 BR B2
P6 T6 BR B3
P7 T7 CR C1
P8 T8 CR C2
P9 T9 CR C3
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In order to make use of the Single-input-multiple-output (SIMO) mode of the software,
each configuration of the wing was tested three times, once each for transducer groups A,
B and C. In all, 25 configurations were taken as follows:

1. Normal condition (all plates in place).
2. Plate P1 removed.
3. Plate P2 removed.
4. Plate P3 removed.
5. Normal condition.
6. Plate P1 removed.
7. Plate P2 removed.
8. Plate P3 removed.
9. Normal condition.

10. Plate P4 removed.
11. Plate P5 removed.
12. Plate P6 removed.
13. Normal condition.
14. Plate P4 removed.
15. Plate P5 removed.
16. Plate P6 removed.
17. Normal condition.
18. Plate P7 removed.
19. Plate P8 removed.
20. Plate P9 removed.
21. Normal condition.
22. Plate P7 removed.
23. Plate P8 removed.
24. Plate P9 removed.
25. Normal condition.

This programme meant that seven sets of measurements for normal condition were
made and two each for each damage state. This was done in order to investigate variability
of the normal and damaged condition data between plate removals.

The measurement strategy for each transmissibility was as follows:
First, each function was obtained using 16 averages. This was done to provide a clean

reference signal to help with feature selection. In the previous paper, 128 averages were
used, however, given the number of tests to be performed here this was regarded as too
time-consuming. A brief experiment showed that the 16-average transmissibilities were
adequately smooth. Next, 100 measurements were taken sequentially using only 1 average.
Over the full sequence of 25 configurations, this gave 700 one-shot measurements for the
normal condition and 200 for each damage condition.

All the data were archived on the HP workstation and transferred back to Sheffield. Each
set of test results was extracted into an LMS universal file and then the transmissibilities were
separated into individual ASCII files using a C program. At this stage the real and imaginary
parts of the transmissibilities were converted to magnitudes and the phases were discarded.

3. FEATURE SELECTION AND NOVELTY DETECTION

The first stage in the analysis was to establish which features could be used to
individually detect damage in the plates. The detection algorithm used was the outlier
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analysis procedure described and validated in references [1, 6]. Here it suffices to say that a
model of normality is constructed from features or patterns taken from data when the
wing is undamaged. Subsequent data are evaluated with respect to this model and any
significant departures are assumed to flag damage. As before, the source of the features/
patterns are the transmissibility functions measured in the experimental phase of this
work. For the purposes of this work, a feature is a region of the transmissibility which
separates unambiguously the normal condition data from the damage data. Examples
will follow shortly, however first, a little terminology will be introduced. This phase of t
he work entailed the examination of many transmissibilities and the number of candidate
features was very large. In order to separate out the best, in as objective a manner
as possible, features were classified as weak, fair or strong according to the following
criteria:

* A strong feature is a region of the frequency range on which the normal data and
damage data appear to be structurally different. Also, the damage data should be
strongly separated compared to the spread of the normal data.

* A fair feature is a region of the frequency range on which the normal data and damage
data appear to be structurally different or the damage data are strongly separated
compared to the spread of the normal data.

* A weak feature is a region of the frequency range on which the normal data and damage
data are separated.

Figure 4 shows an example of a feature which was judged strong. Note that all the solid
lines}which represent samples from the seven normal condition transmissibilities are
tightly clustered. The damage data is not only well separated from the normal cluster, but
shows a peaked structure which is distinct from the normal data.
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Figure 4. An example of a strong feature from one of the transmissibility functions.
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Figure 5. An example of a fair feature from one of the transmissibility functions.
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Figure 6. An example of a weak feature from one of the transmissibility functions.
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Figure 5 shows a pattern which was judged to be a fair feature. Apart from one of the
normal condition patterns the damaged patterns show a distinct peaked structure.
However, the damaged patterns are not separated well from the normal patterns by
the standards of their own internal spacing. Figure 6 shows a weak feature; the normal and
damaged patterns are not structurally distinct, both have a peaked nature. Also, the
damaged patterns are not separated strongly from the normals by the standards
of the variation in the normal patterns. However, this still has potential as a feature,
because the damage patterns are at least outlying the normal cluster (over most of the
range).

Having established criteria for less subjective judgement of feature fitness, the next stage
of the analysis was an exhaustive visual search through the transmissibility database for
features for novelty detection. In order to simplify matters, the transducer groupings were
used as follows. Only transmissibilities T1–T3 were examined for sensitivity to the removal
of Panels P1–P3. Similarly, T4–T6 were examined for features to detect removal of P4–P6.
T7–T9 were examined for features for P7–P9 removal. The selection of features was
carried out by eye on the 16-averaged transmissibilities. The inverses of the
transmissibilities T1n–T9n were also checked.

Once the candidate features had been identified, they were each evaluated for
effectiveness in the outlier analysis. Two main criteria were applied. In the first case,
each point in the normal condition data was tested for discordancy using an inclusive
outlier statistic [1]. The number of points falsely identified as outliers was recorded.
Secondly, the normal condition data were used to form statistics for an exclusive outlier
analysis on the damaged data points (one for each repetition of a panel removal). The
number of points falsely recorded as inliers was noted. The results of this analysis are given
in Tables 3–5 for a representative sample of the panels. For each feature the following data
are given: the transmissibilty of origin, the range of spectral lines, the number of inliers on
the normal data. In what follows, for each repetition of a plate removal: number of
outliers on the damage set, average discordancy normalized according to the threshold
(exclusive). Finally, the strength of the feature is given. Features marked with a star are
taken from the inverse transmissibility.

Note that in each case above, the features were constructed only on the basis of
detecting the removal of a specific panel. Following the analysis, the best feature for each
panel was selected using the following criteria. If possible a feature was chosen which had
no false negatives for damage detection, i.e., had the number 100 in columns 5 and 7
above. If more than one feature satisfied this condition, the one with the least false
positives on the normal condition was chosen, i.e., the feature with the highest score in
column 3. If it was not possible to find a feature with no false negatives for damage,
the selection process was a little more subjective and the average discordancy figures for
the feature were evaluated also. The features marked with *** in the tables are those
Table 3

Results of outlier analysis of potential features to diagnose Panel 2 missing

Trans. Spectral Normal Rep. 1 Rep. 1 Rep. 2 Rep. 2 Feature
number line range inliers ratio outliers ratio outliers strength

1 39–48n 677 13�908183 98 5�058033 62 W
1 845–874n 645 84�220006 100 35�977528 100 Snnn

2 295–304 666 2�047300 66 1�428106 44 W+



Table 4

Results of outlier analysis of potential features to diagnose Panel 5 missing

Trans. Spectral Normal Rep. 1 Rep. 1 Rep. 2 Rep. 2 Feature
number line range inliers ratio outliers ratio outliers strength

4 194–213 640 369�207091 100 81�124033 100 F/W
4 586–605 659 21�880078 100 4�484882 100 F/S
4 504–513n 659 13�500478 96 21�519737 100 W
5 195–214 639 375�436938 100 92�861504 100 F++
5 263–272 673 0�840937 6 0�361309 0 F
5 590–609 662 6�881952 100 3�270125 100 F/S
5 38–57n 662 75�757640 100 59�564716 100 S
5 352–361n 658 2�314719 53 2�837032 70 F/W
5 419–428n 677 0�506041 7 0�616805 9 W
5 438–447n 642 2�968112 52 2�829786 63 F/W
5 770–789n 664 9�740520 100 52�485135 100 F/S
5 825–834n 679 130�349070 100 38�344141 100 S***
6 198–207 662 597�018268 100 22�167515 98 F
6 0–9n 680 5�150848 99 23�862631 100 F/S
6 26–35 666* 17�577650 100 10�596527 100 F/S
6 52–71 654* 5�643725 100 3�231036 100 S
6 275–294n 656 53�172082 100 25�132314 100 F/S
6 622–631n 681 5�137724 88 5�208337 98 F
6 698–727n 633 6�413629 100 4�027143 100 F/S
6 745–754n 676 5�767129 99 10�016291 98 F
6 866–875n 671 1�324489 31 0�711700 12 W

Table 5

Results of outlier analysis of potential features to diagnose Panel 7 missing

Trans. Spectral Normal Rep. 1 Rep. 1 Rep. 2 Rep. 2 Feature
number line range inliers ratio outliers ratio outliers strength

7 14–23 680 1�179119 82 1�795337 99 F/W
7 108–117 671 3�209194 100 7�122971 100 F
7 37–56n 666 30�177145 100 14�435880 100 F
7 324–333n 673 99�250716 100 559�516509 100 S+++
7 454–463n 681 17�107345 100 2�723250 100 F
7 613–642n 661 40�775171 100 47�583174 100 F
7 757–766n 681 637�000692 100 1357�539606 100 Snnn
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selected for the novelty detectors. The features marked with +, ++ and +++ in the
tables are those which were selected earlier to illustrate the idea of weak, fair and strong
features.

Once the features for each novelty detector had been selected, each was analyzed using
principal component analysis. In order to visualize the feature and see how well separated
the normal and damaged data were, each normal and damage set were projected onto the
first two principal components [8]. Figure 7 shows the separation of the normal and
damage clusters for the feature chosen to signal the removal of panel 1. This was a strong
feature and this is reflected in the excellent separation of the clusters. In contrast, Figure 8
shows the corresponding plot for the panel 3 feature. This was one of the two smallest
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Figure 7. PCA visualization of feature for panel 1 removal.
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Figure 8. PCA visualization of feature for panel 3 removal.
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panels and it was only possible to find a fair feature which picked up 31% of the damage
cases. This uninspiring performance is reflected in Figure 8, where it can be seen that the
normal and damage clusters overlap. In fact, all the PCA decompositions except two show
a good separation between the normal and damage data. The exceptions are those for the
removal of panels 3 and 6}the smallest two. Panel 6 gave somewhat better results than
1e−01

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

M
ah

al
an

ob
is

 S
qu

ar
ed

 D
is

ta
nc

e

Number of Plate Missing

Training Set Validation Set Testing Set

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Figure 9. Outlier statistic for all damage states for the novelty detector trained to recognize panel 1 removal.
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Figure 10. Outlier statistic for all damage states for the novelty detector trained to recognize panel 2 removal.
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Figure 11. Outlier statistic for all damage states for the novelty detector trained to recognize panel 3 removal.
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Figure 12. Outlier statistic for all damage states for the novelty detector trained to recognize panel 4 removal.

G. MANSON ET AL.378
panel 3, there was no overlap, but the normal and damage clusters were so close that the
probability of detection was only 60�5%:

The performance of the novelty detectors on all damage states including those they had
been trained for is summarized in Figures 9–17. (The repetition of similar figures here is
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Figure 13. Outlier statistic for all damage states for the novelty detector trained to recognize panel 5 removal.
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Figure 14. Outlier statistic for all damage states for the novelty detector trained to recognize panel 6 removal.
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not needless, they shed considerable light on the performance of the eventual damage
locator.) Each of these plots shows the Mahalanobis distance for each novelty detector
evaluated over the whole set of damage states. In anticipation of the neural network
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Figure 15. Outlier statistic for all damage states for the novelty detector trained to recognize panel 7 removal.
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Figure 16. Outlier statistic for all damage states for the novelty detector trained to recognize panel 8 removal.
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analysis, this set has been split into three subsets for training, validation and testing. Each
contains 66 points from each damage state.

The horizontal dashed lines in the figures are the thresholds for 99% confidence in
identifying an outlier, they are calculated according to the Monte Carlo scheme described
in reference [9]. The thresholds are a function of the number of sample points and the
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Figure 17. Outlier statistic for all damage states for the novelty detector trained to recognize panel 9 removal.

Table 6

99% detection thresholds for outlier analysis

Dimension Inclusive Exclusive

10 39�37 41�78
20 56�53 61�59
30 64�62 79�96
40 78�37 97�76
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dimension of the data set. In this case the number of normal points was always 700;
however, the dimension varied as different spectral line ranges were selected for features.
The relevant thresholds are given in Table 6.

The results shown in Figures 9–17 are very encouraging for classification purposes. Each
novelty detector substantially fires only for the panel removal for which it has been
trained. There are exceptions e.g., the features for panels 3 and 8 (Figures 11 and 16). In
the first case, there are excursions above threshold when panel 3 is removed, but the main
excursions are for panel 5. This was expected as the feature in question was not classified
as strong. In the case of Figure 16, it can be seen that the feature is almost as sensitive to
the removal of panel 9 as for panel 8 for which it was trained.

4. NEURAL NETWORK RESULTS FOR LOCALIZATION

The final stage of the analysis was to produce a damage location system. The algorithm
chosen here was a standard multi-layer perceptron (MLP) neural network. The idea is
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simply to map the novelty indices obtained from the transmissibilities to the damage
location, or in this case to which panel was removed. The neural network is supplied with
the values of the nine novelty indices at the input layer and required to predict the damage
class at the output layer.

Note that there are now two layers of feature extraction. At the first level, certain ranges
of the transmissibilities were selected for sensitivity to the various damage classes. These
were used to construct novelty detectors for the classes. At the second level of extraction,
the nine indices themselves are used as features for the damage localization problem. This
depends critically on the fact that the various damage detectors are local in some sense,
i.e., they do not all fire over all damage classes. That this is true can be seen from Figures
9–17. In fact, the features are almost ‘‘orthogonal’’ in the sense that each largely only flags
damage for one panel.

The procedure followed the guidelines in reference [10]. The data were divided into a
training set, a validation set and a testing set. For the network structure, the input layer
necessarily had nine nodes, one for each novelty index, and the output layer had nine
nodes, one for each class. The number of hidden nodes was determined during training. In
order to estimate the classification accuracy of each network the 1 of M strategy was used.
This means that each class was assigned a specific network output. During training the
network was required to respond with unity at the output corresponding to the presented
class and zero elsewhere. The rationale for this training scheme is as follows. It can be
shown [11], that after training with the 1 of M strategy, if the network is presented with a
test vector it will respond at the outputs with the Bayesian a posteriori probability that the
input vector belongs to that class. In order to assign the class then, one simply finds the
highest output, i.e., the class with highest posterior probability. There are a number of
conditions which must apply for this to work correctly, one is that the prior probabilities
of each class must be specified. In this case they were assumed equal, i.e., all damage types
are equally likely. In order to enforce the condition of equal priors, a balanced training set
was used with equal numbers of examples from each class, 66 from each.

In terms of pseudo-code, the training strategy was:

for number of hidden layer neurons=1 to 50
{

for different random initial conditions=1 to 10
{
train network on training data
evaluate on validation data
terminate training at minimum in validation set error
}

}

This means that the training set is used to establish the weights. The structure and
training time, etc. are optimized by selecting the conditions which give the lowest
validation set error. At the end of this procedure, the network has in a sense been tuned to
both the training and validation sets and therefore an independent testing set is required
for proper verification of the network.

When the networks were trained, the one that gave the lowest validation error had 10
hidden units and gave a misclassification error of 0�155; corresponding to a training error
of 0�158: The best results were obtained after 150 000 presentations of data. The network
weights were updated after each presentation, i.e., the training epoch was 1. When the best



Table 7

Confusion matrix from best neural network: testing set

Prediction 1 2 3 4 5 6 7 8 9

True class 1 62 1 0 0 2 0 0 1 0
True class 2 0 61 0 0 5 0 0 0 0
True class 3 0 1 52 0 7 4 0 2 0
True class 4 1 0 3 60 0 1 0 1 0
True class 5 2 1 0 0 60 3 0 0 0
True class 6 2 0 6 0 8 52 0 0 0
True class 7 1 0 4 0 1 1 58 1 0
True class 8 0 0 0 0 1 1 0 62 2
True class 9 2 1 1 0 0 0 0 15 47

Table 8

Confusion matrix from neural network with seven hidden neurons: testing set

Prediction 1 2 3 4 5 6 7 8 9

True class 1 62 1 0 0 0 2 0 1 0
True class 2 0 62 0 0 3 1 0 0 0
True class 3 0 1 52 0 0 7 4 1 1
True class 4 1 0 6 57 0 1 0 1 0
True class 5 3 4 2 0 47 10 0 0 0
True class 6 0 0 8 0 0 58 0 0 0
True class 7 1 0 4 0 0 2 57 0 2
True class 8 1 0 0 0 0 1 0 53 11
True class 9 1 1 0 0 0 0 0 8 56
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network was tested, it gave a generalization error of 0�135; i.e., 86�5% of the patterns were
classified correctly. The confusion matrix for the test is given in Table 7.

As one might expect the main errors are associated with panels 3, 6 and 9. The reasons
are as follows. Panel 3 had a weaker feature which gave a novelty detector which only fired
on 31% of the damaged patterns. In fact, as can be seen from Figure 11, the detector fired
more often when panel 5 was removed. This is reflected in the confusion matrix, as most
erroneous classifications for panel 3 are to panel 5. Similarly, panel 6 had a weak feature.
More interesting is the situation with panel 9. This confusion is due to the fact that the
novelty detectors for panels 8 and 9 often both fired when either panel was removed. There
is therefore scope here for reselecting features which are more ‘‘orthogonal’’.

The network selected had 190 weights. As there were 660 training patterns, there were
3.5 patterns per weight. This falls a little short of the accepted rule of thumb which
suggests that for proper generalization, 10 patterns per weight are needed [10]. This is not
considered as a cause for concern here as the error on the validation and test sets are both
actually lower than the error on the training set. If a more parsimonious network were
required, one of the trained nets with seven hidden units actually gave a validation error of
0�158 which is barely higher than the minimum. The testing error was however 0�151 and
the ratio of patterns to weights was 4�6 which is not a vast improvement. For comparison,
the confusion matrix for this network is given in Table 8.
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In summary, a network has been found which localizes the damage with an 86�5%
success rate. This is excellent, but could probably be improved by a more extended feature
selection strategy.

The results above have been left simply as numbers of correct classifications. In order to
convert them to probabilities it is necessary to factor in the probabilities of actually
detecting each fault in the first place. The effect of this is as follows: the probability of
detecting damage and locating it correctly is 0�77; the probability of detecting damage and
mislocating it is 0�11; the probability of failing to detect is 0�12: Note that all failures to
detect are associated with panels 3 and 6, the smallest. Given the features selected, the
probability here of a false alarm is found to be 0�04:

5. DISCUSSION AND CONCLUSIONS

The results above show that it is possible to establish a level 2 damage detection system,
i.e., detect and locate, on a real structure. The success rate of the classifier is 86�5% which is
comparable with results in the past for simulated or laboratory data. As discussed in the
Introduction, it is important to recognize that this is a success only in a certain context,
that of locating sizable damage in large structures using vibration-based data. The method
is not at this stage proposed as a means of locating subcritical fatigue damage, and is
frankly unlikely to be. This approach should be used in conjunction with local high-
resolution monitoring of significant structural items.

What is new here is in the damage localization algorithm which uses a two-level feature
extraction procedure in order to process the results of a network of novelty detectors, each
sensitive to a different region of the aircraft. The idea here is that the novelty detectors
integrate and thus magnify and smooth the difference between normal and damage
condition data.

The signal processing proved to be fairly straightforward but relied on an exhaustive
search through the transmissibility database for appropriate features for the novelty
detectors. This is an area which could be automated. Another desirable effect of
automation would be to remove the element of subjectivity from the feature selection
process. The procedure chosen here was made as rigorous as possible by adopting a
principled division into weak, fair and strong features. The strongest features possible were
selected.

One second-level feature or novelty index per damage class was taken here. These
proved to be largely independent and gave a good classification rate. It may well
be possible to select a smaller set of features with a lower error rate by using an
optimization procedure. Future work will include the use of genetic algorithms to select
an optimum second-level feature set. This is related to the issue of sensor optimization.
Because the only allowed locations for damage were the inspection panels, it was possible
to make an (arguably) sensible choice for the locations of the sensors. A network was used
which crossed each plate with a sensor pair. This network would not necessarily be
optimal for a general location system. However, if a model were available which allowed
the simulation of arbitrary damage states and locations, it could be used in an
optimization procedure to determine the best positions for the sensors. This in turn raises
the issue of modelling complex engineering structures and systems with a fidelity
appropriate for training a damage identification system. This is a very difficult problem
and progress is slow and incremental. What was achieved here was a demonstration that a
location system based on a network of novelty detectors can work in an, albeit limited,
large-scale environment.
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As a last word on the subject of generalization, the neural network here has been trained
with the limited aim of telling which of a set of panels has been removed. It cannot
diagnose any other type of damage. The location problem here has been converted to a
finite-class classification problem by fixing damage locations at the panels. This does not
invalidate the approach. A general classification system could be designed to locate
damage to within a given substructure. Despite the fact that the location system is
powerless to provide information about damage off the panels, the individual features
used in the network training are themselves novelty detectors, and can potentially signal
any damage type. Thus, in a worst-case analysis, the system degrades to a level 1
diagnostic, which is still valuable.

Another problem for further work which should be addressed is the extension of the
method to level 3 in Rytter’s scheme, i.e., definition of a diagnostic which can detect, locate
and size damage. One can imagine a situation in which level 2 is sufficient, i.e., when the
diagnosed location of the damage is used to focus an NDT inspection which can size the
fault. However, if a completely automated estimate of residual life or safety is required
(level 4), the information about severity will be critical and level 3 would have to be
automated. This might be the case for an in-flight (or generally on-line) diagnostic system.
However, such systems are not within reach of current technology.
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